
Building Secure Software
in a Zero Trust World

Tria Federal
White Paper
triafed.com

In today’s digital landscape, software security is more critical than ever. With the increasing sophistication of
cyber threats, traditional perimeter-based security models are no longer sufficient. The Zero Trust security model
assumes that no user or device can be trusted by default and requires strict verification for every access request.

This white paper explores the importance of secure coding practices, security testing, and continuous monitoring
within the Software Development Life Cycle (SDLC), and how they integrate with Zero Trust principles to create
robust and resilient software.

1. Introduction

Zero Trust is a security framework that assumes no user or device can be trusted by default and requires strict
verification for every access request regardless of the user’s location or device. It shifts the focus from perimeter-
based defense to a data-centric approach where least privilege access is enforced.

The federal government has recognized the importance of Zero Trust and has issued mandates to agencies to
adopt this model, including Executive Order 14028 and OMB memorandum M-22-09. These mandates aim to
improve the cybersecurity posture of federal agencies and protect sensitive data by requiring the implementation
of Zero Trust principles and practices.

2. What is Zero Trust?

Building Secure Software
in a Zero Trust World

2

Remote
Attacker

Remote
Attacker

Remote
Attacker

Firewall

Zero Trust Network

Traditional Network

3. Zero Trust vs. Trust-Based Network

Building Secure Software in a Zero Trust World

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf

• Breach is assumed:
Expect that attackers have already breached your system and design security controls accordingly.

• Nothing is inherently trusted:
Everyone and everything, inside or outside the network, must be verified.

• Access is granted by need:
Only give users and devices the minimum access required for their jobs.

• Verification is continuous:
All users, devices, and requests are fully verified before granting access.

• Networks are segmented:
Divide networks into smaller segments to limit the breach.

4. With Zero Trust Security

Perimeter-based security models, which focus on securing the network perimeter and assume that everything
inside the network is trusted, are not Zero Trust. This includes traditional security measures like firewalls, intrusion
detection systems, and virtual private networks (VPNs).

These solutions alone are not enough in a Zero Trust architecture, as they do not verify every access request and
do not assume that everything inside the network is untrusted. Additionally, implicit trust in any user or device,
regardless of their location or network, goes against the Zero Trust model.

5. What Zero Trust is Not

3

FEATURE ZERO TRUST SECURITY TRADITIONAL PERIMETER-BASED SECURITY

Core
Principle

“Never trust, always verify”

Trust
Assumption

No implicit trust, assumes breach

Security
Focus

Users, devices, and applications,
regardless of location

Access
Control

Granular, based on user identity,
device posture, context, and least privilege

Network
Segmentation

Micro-segmentation, isolating
resources and limiting lateral movement

Threat
Detection

Continuous monitoring and analytics,
inside and outside the network

Data
Protection

Data-centric, focuses on
protecting data regardless of location

Attack
Surface

Reduced attack surface due to granular
access control and micro-segmentation

Authentication
& Authorization

Continuous verification
at every access request

“Trust but verify” (within the perimeter)

Implicit trust within the network perimeter

Network perimeter (firewalls, VPNs)

Broader, often based on network location or user role

Limited segmentation, larger zones of trust

Focus on external threats, less visibility into internal activity

Perimeter-centric, relies on network security to protect data

Larger attack surface, potential for lateral movement within the network

Authentication at network entry, less frequent authorization within

Building Secure Software in a Zero Trust World

4

• Encryption:
Implementing encryption at rest and in transit safeguards data from unauthorized access and tampering.

• Data Integrity Checks:
Using hashing algorithms and digital signatures helps verify data integrity and prevent unauthorized modification.

• Immutable Infrastructure:
Adopting immutable infrastructure, where servers and components are never modified directly after deployment,
enhances security and reliability.

6. The Goal of Zero Trust-Based Software Development

The goal of a Zero Trust initiative is to maximize data security by maximizing the confidentiality, integrity, and
availability of data. This is essential to maintaining trust and ensuring business continuity. Zero Trust leverages
tools including:

Embracing Zero Trust within software development necessitates a fundamental shift in perspective, where secure
coding practices are not merely a checkbox but an integral component of the development lifecycle. This entails
shifting security to the left in the SDLC, ensuring that security is addressed from the earliest stages of design and
development. Secure coding serves as the bedrock upon which the Zero Trust model is built, as it proactively
addresses vulnerabilities and misconfigurations that could be exploited by malicious actors. By integrating secure
coding practices from the outset, organizations can significantly reduce the attack surface and mitigate potential
risks, thereby aligning their software development efforts with the core principles of Zero Trust. This synergy
between secure coding and Zero Trust not only enhances the overall security posture but also fosters a culture of
security awareness throughout the development process.

Zero Trust and secure coding practices complement each other by creating a multi-layered defense strategy.
Secure coding practices proactively prevent vulnerabilities during development, while Zero Trust principles
continuously verify trust and access, even if the code has unforeseen flaws. This combination ensures that even if
one layer of defense fails, the others can still protect the system and data.

Educating developers on secure coding principles early in a project is crucial because it prevents the introduction
of vulnerabilities early in the development process, saving time and resources by avoiding costly fixes later. This
proactive approach ensures that security is integrated into the software’s foundation, making it inherently more
resilient to attacks.

Security must be integrated into every phase of the SDLC to ensure that software is built with a strong security
foundation. During the requirements gathering and analysis phase, security requirements should be identified
and prioritized.

In the design phase, security measures should be incorporated into the software’s architecture and design.

During implementation, secure coding practices should be followed to prevent vulnerabilities.

In the testing phase, both manual and automated security testing should be conducted to identify and address any
security flaws.

After deployment, continuous monitoring and change management should be in place to detect and respond
to any security threats. By addressing security at each stage of the SDLC, organizations can proactively mitigate
risks and ensure the software’s overall security posture.

7. Zero Trust and Software Development

Building Secure Software in a Zero Trust World

5

SDLC PHASE ZERO TRUST ALIGNMENT

Requirements Gathering
 & Analysis

Define "protect surface" – the data, assets, applications, and services (DAAS) most critical to
the organization. Map data flows and dependencies.

Design
Design for least privilege access to DAAS. Implement micro-segmentation to

isolate DAAS and limit lateral movement.

Implementation
(Coding)

Enforce least privilege through code. Integrate with Identity Access Management (IAM) systems
 for authentication and authorization. Implement contextual access controls based on user, device, and location.

Testing
Verify that only authorized users and devices can access DAAS. Test micro-segmentation effectiveness.

Simulate attacks to test lateral movement prevention.

Deployment
Deploy with least privilege access by default. Enforce micro-segmentation in production.

Continuously monitor and log access attempts.

Monitoring and
Change Management

Continuously monitor and validate access controls. Adapt micro-segmentation rules
based on changing threats and business needs. Maintain up-to-date inventory of DAAS.

8. SDLC Phases and Zero Trust Alignments

Risk assessment methodologies, threat modeling, and micro-segmentation are essential components of a secure
development process that aligns with Zero Trust principles. Incorporating these practices during the initial phases
of development is crucial for establishing a strong security foundation and proactively mitigating potential risks.

Risk assessment methodologies enable organizations to identify and prioritize potential threats, allowing them
to allocate resources effectively and focus on the most critical security concerns. By conducting thorough risk
assessments early in the development process, organizations can make informed decisions about security
controls and design choices, reducing the likelihood of vulnerabilities and misconfigurations.

Threat modeling complements risk assessment by providing a structured approach to identifying and analyzing
potential attack vectors. By applying threat modeling frameworks like STRIDE or DREAD during the design phase,
developers can proactively address security weaknesses and ensure that the software is resilient to various attack
scenarios.

Micro-segmentation enhances security by dividing the network into smaller, isolated segments, limiting the lateral
movement of attackers and containing the impact of security breaches. By incorporating micro-segmentation into
the software’s architecture from the outset, organizations can create a more defensible environment that aligns
with the Zero Trust principle of least privilege access.

Integrating these practices early in the SDLC ensures that security is not an afterthought but a core consideration
throughout the development process, resulting in more secure and resilient software that aligns with the principles
of Zero Trust.

9. Design Considerations When Incorporating Zero Trust-Based Secure Development

Building Secure Software in a Zero Trust World

https://owasp.org/www-community/Threat_Modeling_Process#stride
https://www.eccouncil.org/cybersecurity-exchange/threat-intelligence/dread-threat-modeling-intro/

6

The primary objective of secure coding practices in the context of Zero Trust is to proactively address and prevent
vulnerabilities and misconfigurations that could be exploited by malicious actors. Examples of secure coding
techniques which support the Zero Trust model include:

• Input Validation:
 Ensuring that all data input into a system is checked for appropriate formatting and type to prevent malicious data
 from causing unexpected behavior or vulnerabilities.

• Output Encoding:
 Converting data from one format to another to prevent it from being misinterpreted or used to inject malicious code.

• Parameterized Queries:
 Structuring database queries so that user input is separated from the actual query command, preventing injection attacks.

• Code Reviews:
 Systematic examination of source code by other developers to find and fix errors and security flaws that were 	
 missed in the initial development process.

• Least Privilege:
 Limiting access rights for users, applications, and processes to only what is necessary to perform their tasks.

• Explicit Verification:
 The process of proactively and continuously verifying the identity, authorization, and trustworthiness of users 	
 and devices before granting them access to resources.

10. Secure Coding Practices Applicable to Zero Trust

Testing and continuous monitoring are necessary for Zero Trust development because they assist in identifying
vulnerabilities and security threats in real time, even after the software has been deployed. This aligns with the
Zero Trust principle of continuous verification, ensuring that trust is never assumed, and that security is constantly
maintained. Continuous monitoring also creates a feedback loop which can foster continuous design improvement.
Some tools and methodologies include:

• Security Testing:
 Employing a combination of static, dynamic, interactive, and penetration testing helps identify vulnerabilities 	
 throughout the SDLC.

• Automated Security Testing Tools:
 Leveraging automated tools for security testing increases efficiency and enables early detection of vulnerabilities.

• Manual Security Testing:
 While automation is valuable, manual security testing remains crucial for identifying complex vulnerabilities and 	
 business logic flaws.

• Continuous Monitoring:
 Implementing continuous monitoring, logging, and auditing helps detect and respond to security threats in real time.

• Anomaly Detection:
 Utilizing rule-based and machine learning-based techniques for anomaly detection allows for proactive 	
 identification and mitigation of potential security incidents.

11. Security Testing and Continuous Monitoring

Building Secure Software in a Zero Trust World

7

Here are some best practices for Zero Trust deployments:

• Start with an understanding of your goals and priorities:
 What are you trying to protect? What are your biggest security risks?

• Take a phased approach:
 Don’t try to implement everything at once. Start with a few key areas and gradually expand your Zero Trust 	
 implementation over time.

• Focus on identity and access management:
 This is the foundation of Zero Trust. Make sure that there are strong authentication measures in place and that 	
 granular access controls are being enforced.

• Use micro-segmentation to isolate sensitive data and applications:
 This can help to limit the impact of a breach.

• Monitor your network activity closely:
 This will help to identify and respond to threats and vulnerabilities quickly.

12. Best Practices for Zero Trust Deployment

Building secure software in a Zero Trust world requires a multi-faceted approach that encompasses secure coding
practices, rigorous security testing, continuous monitoring, and a commitment to data protection. By integrating
Zero Trust principles into the SDLC and adopting a proactive security posture, organizations can develop software
that is resilient to modern threats and safeguards sensitive data.

13. Conclusion

NIST Overview of Zero Trust - https://www.nist.gov/publications/zero-trust-architecture

Secure Development Lifecycle NIST 800-218 V 1.1 - https://csrc.nist.gov/pubs/sp/800/218/final

Zero Trust Advancement Center - https://cloudsecurityalliance.org/zt

14. Resources

Paul Misner, CISSP, is a Cybersecurity Subject Matter Expert for Tria Labs. Paul specializes in the areas of Threat
Hunting and SOC management.

15. Acknowledgements

Building Secure Software in a Zero Trust World

https://www.nist.gov/publications/zero-trust-architecture
https://csrc.nist.gov/pubs/sp/800/218/final
https://cloudsecurityalliance.org/zt

Tria Federal White Paper
triafed.com

